Here we can find the value of sin(α +2β).
We know that
sin(180° - a) = sin a
Given,
Cos (α + β) = 0
cos (α + β) = cos
⇒ α + β =
(since, cos
= cos 90 = 0)
(Multiplying β = π/2 - α)
⇒ 2β =
2−2α ⇒ α + 2β = π − 2α + α
⇒ α + 2β = π – α
⇒ Sin (α + 2β) = Sin (π - α)= Sin α
[Since, sin(π - θ) = sinθ]
Therefore ,
sin(α +2β) = sin α
Hence,
If Cos (α + β) = 0, then sin(α +2β) = sin α
In same question, there are two answers
Another answer :
Given,
α + β =
sin (α + β + β)
=
(sin+β) (Since α + β = π/2 , given)
= cos β
(Since sin (90 + θ) = cos θ)