Given, cos2(α)+cos2(β)+cos2(γ)=1 Using the identity cos2(x)=1−sin2(x), we substitute: (1−sin2(α))+(1−sin2(β))+(1−sin2(γ))=1 Simplifying the equation: 3−(sin2(α)+sin2(β)+sin2(γ))=1 Rearrange to isolate the sine terms: sin2(α)+sin2(β)+sin2(γ)=2 Now, calculate the dot product: