The key concept involves simplifying complex numbers in the polar form. We use the argument (angle) of the complex number and De Moivre's theorem, which states: (r(cosθ+isinθ))n=rn(cos(nθ)+isin(nθ)) Calculation: ⇒(
√3+i
√3−i
)3 Multiply the numerator and the denominator by the conjugate of the denominator ⇒
√3+i
√3−i
×
√3+i
√3+i
⇒
(√3+i)2
(√3−i)(√3+i)
2+2√3i
4
=
1+√3i
2
Convert to polar form. The modulus r is r=√(
1
2
)2+(
√3
2
)2=√
1
4
+
3
4
=√1=1 The argument θ is θ=tan−1(
√3
2
1
2
)=tan−1(√3)=
π
3
So the polar form of the complex number is 1(cos
π
3
+isin
π
3
) To cube the complex number, we use De Moivre's Theorem In our case, r=0 so, (cos