3x+4y=4 Let the coordinates of one point be (2+r‌cos‌θ,2+r‌sin‌θ) Then, the coordinates of other point will be [2+r‌cos(90+θ),2+r‌sin(90+θ)] ⇒‌‌(2−r‌sin‌θ,2+r‌cos‌θ) Both of the coordinates lie on 3x+4y=4 So, 3(2+r‌cos‌θ)+4(2+r‌sin‌θ)=4 r(3‌cos‌θ+4‌sin‌θ)=−10. . . (i) And, 3(2−r‌sin‌θ)+4(2+r‌cos‌θ)=4 r(−3‌sin‌θ+4‌cos‌θ)=−10 Divide Eq. (i) by (ii), we get ‌3‌cos+4‌sin‌θ=−3‌sin‌θ+4‌cos‌θ ‌7‌sin‌θ=cos‌θ ‌tan‌θ=1∕7 Hence, slopes are ‌