Consider the expression, 30⋅52n+4⋅23n Substitute 1 for n in above expression. 30⋅52(1)+4⋅23(1)‌‌=30⋅25+4⋅8 ‌‌=782 Now put 2 for n 30⋅52(2)+4⋅23(2)‌‌=30⋅625+4⋅64 ‌‌=19006 The greatest divisor for both above result is, p=34 Now, consider the equation, 22n+1−6n−2 Substitute 1 for n in above equation, 22(1)+1−6(1)−2‌‌=8−6−2 ‌‌=0 Now, substitute 2 for n 22(2)+1−6(2)−2‌‌=32−12−2 ‌‌=18 Substitute 3 for n 22(3)+1−6(3)−2‌‌=128−18−2 ‌‌=108 The greatest divisorfor above three results is q=18 This implies, p+q‌‌=34+18 ‌‌=52