Given:
cos284∘+sin‌2126∘−sin‌84∘‌cos‌126∘=KWe can simplify this as follows:
‌sin‌2126∘=sin‌2(90∘+36∘)=cos236∘‌ by using the identity ‌sin‌(90∘+θ)=cos‌θ‌−sin‌84∘‌cos‌126∘=cos(90∘−84∘)‌cos(90∘+36∘)Substituting these identities, we get:
K=cos284∘+cos236∘−sin‌84∘‌cos‌126∘Next, using the identity for product-to-sum,
sin‌θ‌cos‌φ=‌[sin‌(θ+φ)+sin‌(θ−φ)], substitute values as needed, ultimately simplifying:
K=cos284∘−sin‌236∘+1+‌−sin‌24∘Continuing to simplify using trigonometric identities:
K=cos‌120∘‌cos‌48∘+‌−sin‌224∘Now solve for
K :
K=−‌(1−2sin‌224∘)+‌−sin‌224∘This results in:
K=−‌+‌=‌Now, for the expression involving
tan‌A :
tan‌A+cot‌A=2KSubstitute
K=‌ :
tan‌A+‌=‌Multiply through by
tan‌A to eliminate the fraction:
2tan2A−5‌tan‌A+2=0Factor the quadratic equation:
(2‌tan‌A−1)(tan‌A−2)=0Thus, the possible values for
tan‌A are:
tan‌A=‌,2