=−4sin‌x−3‌cos‌x Now, 2sin‌x−3‌cos‌x ‌⇒A(−4sin‌x−3‌cos‌x)+B(4‌cos‌x−3sin‌x) ‌⇒(−4A−3B)sin‌x+(−3A+4B)‌cos‌x Comparing the coefficients, we get −4A−3B=2‌ and ‌−3A+4B=−3 Solving these two equations, we get ‌A=‌