loga x is defined in real domain if x>0,a>0,≠1. ∴
1
log(b−c)a
+
1
log(b+c)a
is defined for b – c > 0, b + c > 0, b – c ≠1, b + c ≠1 ∴ b > |c| and b ≠|c| + 1. Also for a = 1, we get denominator = 0 So, a > 0, ≠1. ∴ If b > |c| , ≠|c| + 1 and a > 0, ≠1 , then