Solution:
‌P(5,1,−3)
‌L1:x−1=y−2=z=λ
‌L2:x−2=y=z−1=µ
Any point of L1 is Q(λ+1,λ+2,λ)
Any point of L2 is R(µ+2,µ,µ+1)
Now PQ<λ−4,λ+1,λ+3>−⟨1,1,1⟩=0
‌λ−4+λ+1+λ+3=0
‌3λ=0
‌⇒λ=0
‌∴Q(1,2,0)
Also, PR⟨µ−3,µ−1,µ+4⟩.⟨1,1,1⟩=0
‌µ−3+µ−1+µ+4=0
‌⇒µ=0
‌R(2,0,1)
© examsnet.com