At x=1,f(x) is continuous therefore, ‌f(1)=f(1)=f(1+) ‌f(1)=3+c ......(1) ‌f(1+)=
lim
h→0
2(1+h)+1 ‌f(1+)=
lim
h→0
3+2h=3 ......(2) from (1) & (2) c=0 at x=0,f(x) is continuous therefore, f(0−)=f(0)=f(0+) ......(3) f(0)=f(0+)=2 ......(4) f(0−) has to be equal to 2
lim
h→0
‌
a−b‌cos(2h)
h2
‌
lim
h→0
‌
a−b{1−
4h2
2!
+
16h4
4!
+...}
h2
‌
lim
h→0
‌
a−b+b{2h2−
2
3
h4...}
h2
for limit to exist a−b=0 and limit is 2b ........(5) from (3), (4) & (5) a=b=1 checking differentiability at x=0 ‌‌ LHD : ‌
lim
h→0
‌
‌
1−cos‌2‌h
h2
−2
−h
‌
lim
h→0
‌
1−(1−
4h2
2!
+
16h4
4!
...)−2h2
−h3
=0 ‌ RHD : ‌
lim
h→0
‌
(0+h)2+2−2
h
=0 Function is differentiable at every point in its domain ‌∴m=0 ‌m+a+b+c=0+1+1+0=2