≥0 Case I : When |[x]|−2≥0 and |[x]|−3>0 ∴x∈(−∞,−3)∪[4,∞) ........(1) Case II : When |[x]|−2≥0 and |[x]|−3<0 ∴x∈[−2,3) .......(2) So, from (1) and (2) we get Domain of function =(−∞,−3)∪[−2,3)∪[4,∞) ∴(a+b+c)=−3+(−2)+3=−2(a<b<c) ⇒ Option (3) is correct.