dxdx=x2 y⋅x2=∫x2exdx yx2=x2ex−∫2xexdx =x2ex−2(xex−ex)+c yx2=x2ex−2xex+2ex+c yx2=(x2−2x+2)ex+c 0=e+c⇒c=−e y(x).x2−ex=(x−1)2ex−e z(x)=(x−1)2ex−e ‌ For local maximum ‌z′(x)=0 ∴2(x−1)ex+(x−1)2ex=0 ∴x=−1 And local maximum value =z(−1)