Let pi,pf,Vi and Vf be the initial and final pressure and volume. Given, AB is isothermal (∆T=0), BC is isochoric (∆V=0) and CA is adiabatic (∆Q=0) Since, isothermal work (WAB)=p1V1‌ln‌
Vf
Vi
where, Vi and Vf are volume at A and B, respectively. ∴‌‌WAB=p1V1‌ln‌
2V1
V1
=p1V1‌ln‌2 Since, at constant volume, work done is zero. ∴‌‌WBC=0 Since, WCA is an adiabatic work done, i.e. WCA‌‌=‌
1
1−γ
(pfVf−piVi) ⇒‌‌WCA‌‌=‌
1
1−γ
(p1V1−‌
p1
4
×2V1) ‌‌=‌
1
1−γ
(p1V1−p1V1∕2)=‌
1
1−γ
‌
p1V1
2
∴ Net work done, W‌net ‌=WAB+WBC+WCA ‌‌=p1V1‌ln‌2+0+‌
1
1−γ
‌
p1V1
2
‌‌=p1V1[ln‌2+1∕2(1−γ)] From ideal gas law, pV=nRT ∴W‌net ‌=RT[ln‌2−1∕2(γ−1)] (∵n=1)