Given, curve ⇒y=x3 P(t,t3) Equation of tangent at P(t,t3) (y−t3)=3t2(x−t) From Eqs. (i) and (ii), x3−t3‌‌=3t2(x−t) ⇒‌(x−t)(x2+t2+xt)=3t2(x−t) ⇒‌x2+xt−2t2=0 ⇒‌(x−t)(x+2t)=0 ⇒‌x=t‌ or ‌x=−2t This is not possible. Now, the coordinate of Q=(x,y)=(−2t,(−2t)3) ∴‌‌Q=(−2t,−8t3) ∴ Ordinate of the point dividing PQ in the ratio 1:2 is ‌