|√3α+2β+3γ−16|=14...(i) α2+β2+γ2=1.....(ii) Volume of parallelepiped by vector
→
u
,
→
v
,
→
w
V‌=[
→
u
→
V
→
w
] ‌=
→
u
⋅(V×w)....(iii) |
→
u
|=|
→
v
|=|
→
w
|=1 (Given)...(iv) |
→
u
−
→
v
|=|
→
v
−
→
w
|=|
→
w
−
→
u
|‌-(Given) ‌ ⇒|
→
u
−
→
v
|2=|
→
v
−
→
w
|2=|
→
w
−
→
u
|2 ⇒
u2+v2
(A)
−2
→
u
â‹…
→
v
=
v2+w2
(B)
−2
→
v
â‹…
→
w
=
w2+u
(C)
2−2
→
w
â‹…
→
u
(A) and (B) ⇒u2+v2−2
→
u
â‹…
→
v
=v2+w2−2
→
v
â‹…
→
w
⇒u2−w2=2
→
u
â‹…
→
v
−2
→
v
â‹…
→
w
  [∵|
→
u
|=|
→
w
|=1 (Given)] ⇒
→
u
â‹…
→
v
=
→
v
â‹…
→
w
Hence, by using (B) and (C) also, we will get
→
u
â‹…
→
v
=
→
v
â‹…
→
w
=
→
w
â‹…
→
u
=m (say)...(v) ⇒
→
u
,
→
v
,
→
w
are the vectors of an equilateral triangle (say â–³ABC )
d(O,P)=frac‌16‌sqrt‌3+4+9 ‌=‌
16
4
‌=4‌ units ‌
→
OA
‌=
→
u
,
→
OB
=
→
v
,
→
OC
=
→
w
|
→
OA
|‌=|
→
OB
|=|
→
OC
|=1‌ (Given) ‌ ‌=‌
16
4
‌=4‌ units ‌
→
OA
‌=
→
u
,
→
OB
=
→
v
,
→
OC
=
→
w
|
→
OA
|‌=|
→
OB
|=|
→
OC
|=1‌ (Given) ‌ In an equilateral triangle, circumcentre, orthrocentre and centroid coincide. Let D be the circumcentre of △ABC, then ∠ADB=120∘ Given =‌