0 such that |f(x)|>| {f}^{'}( {x})| \forall x \in(\alpha, \infty) Solution: f^{'}(x)=e^{-\frac{1}{x^{2}}} \cdot \frac{2}{x^{3}}+\frac{\pi}{2} \sqrt{1+\sin \frac{\pi x}{2}} \lim_{x \to 0^{+}} {e^{-{1}/{x^{2}}}}/{x^{3}}=0 Also \lim_{x \to \infty} f(x)=\infty f^{' '}(x) does not exist for x=3,7,11 . . ." >


JEE Advanced 2020 Full Test 5 Paper 2

© examsnet.com
Question : 45
Total: 54
Go to Question: