If log‌3=log(3x−2) and log(3x+4) are in arithmetic progression Then,2×log(3x−2)=log‌3+log(3x+4) Thus,log(3x−2)2=log‌3(3x+4) Thus,(3x−2)2=3(3x+4) ⇒32x−4×3x+4=3×3x+12 ⇒32x−7×3x−8=0 ⇒(3x+1)×(3x−8)=0 But 3x+1≠0 Thus,3x=8 Hence x=log38 Hence, option B is the correct answer.