,If log4log44a−b=2log4(√a−√b)+log44 i.e. log4log44a−b=log4((√a−√b)2)×4 i.e. log44a−b=((√a−√b)2)×4 i.e. (a−b)×log44=((√a−√b)2)×4 i.e. a−b=4a+4b−8√ab i.e. 3a+5b−8√ab=0 i.e. 3
a
√b2
−8
a
√b
+5=0 Put
a
√b
=t therefore 3t2−8t+5=0 solving we get t=1 or t=
5
3
i.e.
a
√b
=1 or
5
3
but if
a
√b
=1 then a=b then log4(√a−√b) will become indefinite Therefore