Let required point be (α,β) on the straight line
y=2x+11, which is nearest to the circle
16(x2+y2)+32x−8y−50=0 ⇒
x2+y2+2x−y−=0 ∴ centre of circle
=(−1,) and radius,
r=√1++= Now, equation of straight line passing through centre
(−1,) and (α,β) is
y−=()(x+1) ...(i)
Now, gradient of this straight line
=() Since, straight line (i) is perpendicular to the line
y=2x+11 ∴
()×2=−1[∵m1.m2=−1] ⇒
2β−=−α−1 ⇒
2β+α=−1+=− ⇒
4β+2α=−1 ...(ii)
∵ Point (α,β) lies on straight line
y=2x+11 ∴
β=2α+11 ⇒
β−2α=11..(iii)
On solving Eqs. (ii) and (iii), we get
5β=10⇒β=2 and
2α=2−11=−9⇒α=− ∴ Required point is
(−,2)