Given, equation of parabola ‌x2+4x+2y=0 ⇒‌‌x2+4x+4=−2y+4 ⇒(x+2)2=−2(y−2) ⇒X2=−2Y ‌ where ‌X=x+2‌ and ‌Y=y−2 ‌ Vertex of this parabola ‌ ‌X=0,Y=0 ⇒x+2=0,y−2=0 ⇒(−2,2) Now, equation of tangent at the vertex (−2,2) of the given parabola is ‌x(−2)+2(x−2)+y+2=0 ⇒−2x+2x−4+y+2=0 ⇒y=2