Let x1 be the least number x10 be the largest number Given ‌
x2+x3+...+x10
9
=47 x2+x3+⋅sx9+x10=423→(1) ‌
x1+x2....+x9
9
=42 x1+x2+⋅sx9=378‌‌→(2) (1)−(2)=x10−x1=45 Sum of 10 observations x1+x2+x3+⋅sx10=423+x1 Since the minimum value of x10 is 47, the minimum value of x1 is 2, minimum average =‌
423+2
10
=42.5 The maximum value of x1 is 42 , Maximum average =‌