Given the equation: sin‌9θ=sin‌θ This can be rewritten as: sin‌9θ−sin‌θ=0 Using the identity sin‌C−sin‌D=2‌cos(‌
C+D
2
)‌s‌i‌n‌(‌
C−D
2
), we have: 2‌cos(‌
9θ+θ
2
)‌s‌i‌n‌(‌
9θ−θ
2
)=0 Simplifying, this becomes: 2‌cos‌5‌θ‌s‌i‌n‌4θ=0 This implies either: ‌cos‌5‌θ=0 ‌sin‌4θ=0 For cos‌5‌θ=0, we have: 5θ=(2n+1)‌
Ï€
2
This gives: θ=(2n+1)‌
Ï€
10
For sin‌4θ=0, we have: 4θ=nπ This gives: θ=‌
nπ
4
Calculating these solutions within the interval [0,2π] : From θ=(2n+1)‌
Ï€
10
: θ=‌
Ï€
10
,‌
3Ï€
10
,‌
Ï€
2
,‌
7Ï€
10
,‌
9Ï€
10
,‌
11Ï€
10
,‌
13Ï€
10
,‌
3Ï€
2
,‌
17Ï€
10
,‌
19Ï€
10
From θ=‌
nπ
4
: θ=0,‌
Ï€
4
,‌
Ï€
2
,‌
3Ï€
4
,π,‌
5Ï€
4
,‌
3Ï€
2
,‌
7Ï€
4
,2π The total number of solutions counting common terms ‌