The electric field E at point (30,30,0) due to a charge of 0.008µC placed at the origin can be calculated using the formula: E=‌
Kq
r3
⋅r Step 1: Calculate the distance r : r=√(x2−x1)2+(y2−y1)2+(z2−z1)2 Substitute the given coordinates: r=√302+302+02=30√2‌cm=30√2×10−2m Step 2: Convert charge q to Coulombs: q=8×10−3µC=8×10−3×10−6C Step 3: The position vector r is: r=(30
∧
i
+30
∧
j
)×10−2m Step 4: Substitute into the electric field formula: E=‌
9×109×8×10−3×10−6
(30√2×10−2)3
×(30
∧
i
+30
∧
j
)×10−2 Calculation: E=‌
9×8×109×10−11
27×2√2×10−6×103
×30(
∧
i
+
∧
j
) Simplify the expression: ‌E=‌
9×8×102×3
27×2√2
(
∧
i
+
∧
j
) ‌E=200√2(
∧
i
+
∧
j
)NC−1 Thus, the electric field at the given point is 200√2(