To solve the problem, we need to calculate the expression sin‌216∘−sin‌276∘. We start by using the identity for the difference of squares: sin‌2A−sin‌2B=(sin‌A−sin‌B)(sin‌A+sin‌B) However, let's examine this step-by-step to understand the calculation better. Given that: sin‌276∘=sin‌2(90∘−14∘)=cos214∘ And sin‌216∘ remains as it is. Using the trigonometric identity sin‌2θ=1−cos2θ, we have: sin‌216∘−sin‌276∘=sin‌216∘−cos214∘ Since cos214∘=1−sin‌214∘ : sin‌216∘−(1−sin‌214∘)=sin‌216∘−1+sin‌214∘ Now, recall that sin‌(90∘−θ)=cos‌θ, hence: sin‌216∘=cos274∘=1−sin‌274∘ Putting this together, you arrive at: sin‌216∘+sin‌274∘=1 Further solve it using calculation and simplification; the final result is: sin‌216∘−sin‌276∘=‌
3
4
Therefore, the value of sin‌216∘−sin‌276∘ is ‌