)=−1 ‌⇒y2−8y+15=−x2+6x−8 ‌⇒x2+y2−6x−8y+23=0.......(i) (AC)2=(BC)2 [ ABC is an isosceles right angled triangle] ⇒(x−2)2+(y−3)2=(x−4)2+(y−5)2 ⇒x2+4−4x+y2+9−6y ‌=x2+16−8x+y2+25−10y ⇒4x+4y=28⇒x+y=7 ⇒y=7−x.......(ii) Substituting the value of y from Eq. (ii) in the Eq. (i), ‌x2+(7−x)2−6x−8(7−x)+23=0 ⇒x2+49+x2−14x−6x−56+8x+23=0 ⇒2x2−12x+16=0⇒x2−6x+8=0 ⇒x=4,2 If x=4, then y=3 and If x=2, then y=5. If (x,y)=(4,3), then ‌ Centroid of triangle is ‌(‌‌