=1 Let the coordinates be P(8‌cos‌θ,−4‌sin‌θ). Then, Q(−8‌cos‌θ,4‌sin‌θ),R(−8‌cos‌θ,4‌sin‌θ),S(8‌cos‌θ,−4‌sin‌θ) The area of rectangle is given by, A=PQ×RS =16‌cos‌θ×8‌sin‌θ =64‌sin‌2‌θ Differentiate w.r.t θ
dA
dθ
=128‌cos‌2‌θ
d2A
dθ2
=−256‌sin‌2‌θ For the critical number of A,