We have, y2+2xy+50|x|=625 Case I When x≥0, ∴y2+2xy+50x=625 y2−625+2xy+50x=0 (y+25)(y−25)+2x(y+25)=0 (y+25)(2x+y−25)=0 ⇒y+25=0or 2x+y−25=0 Case II When x<0, y2+2xy−50x=625 ⇒y2−625+2xy−50x=0 ⇒(y−25)(2x+y+25)=0 ⇒y=25or 2x+y+25=0 Graph of the given curve is