CBSE Class 12 Math 2020 Delhi Set 2 Solved Paper

© examsnet.com
Question : 7
Total: 11
Find ∫‌
x+1
x(1−2x)
‌dx
Solution:  
Let
I=∫‌
x+1
x(1−2x)
‌dx

Also, let
‌‌ Also, let ‌‌‌
x+1
x(1−2x)
‌
=‌
A
x
+‌
B
1−2x

⇒‌
x+1
x(1−2x)
‌
=‌
A(1−2x)+Bx
x(1−2x)

⇒‌x+1‌=x(−2A+B)+A
Comparing coefficient of x both sides, we get
1=−2A+B
Comparing constant term both sides, we get
A=1
∴‌‌ From equation (i),
1=−2(1)+B
⇒‌‌B=3
∴‌‌∫‌
x+1
x(1−2x)
‌dx
=∫‌
1
x
‌dx
+∫‌
3
1−2x
‌dx

=log|x|+‌
3‌log|1−2x|
−2
+C

=log|x|−‌
3
2
‌log
|1−2x
|+C‌ Ans. ‌

‌
© examsnet.com
Go to Question: