CBSE Class 12 Math 2008 Solved Paper

© examsnet.com
Question : 21
Total: 29
Find the shortest distance between the following lines:
x3
1
=
y5
2
=
z7
1
and
x+1
7
=
y+1
6
=
z+1
1

OR
Find the point on the line
x+2
3
=
y+1
2
=
z3
2
at a distance 32 from the point (1 , 2 , 3)
Solution:  
x3
1
=
y5
2
=
z7
1

The vector form of this equation is:
r
= 3
^
i
+5
^
j
+7
^
k
+ λ (
^
i
2
^
j
+
^
k
)

r
=
a
1
+λ
b1
... (1)
x+1
7
=
y+1
6
=
z+1
1

The vector form of this equation is:
r
= -
^
i
^
j
^
k
+ λ (7
^
i
6
^
j
+
^
k
)

r
=
a2
+λ
b2

Therefore,
a1
= 3
^
i
+5
^
j
+7
^
k
,
b1
=
^
i
2
^
j
+
^
k
,
a2
= -
^
i
^
j
^
k
and
b2
= 7
^
i
6
^
j
+
^
k

Now, the shortest distance between these two lines is given by:
d = |
b1
×
b2
.
a2
a1
|
b1
×
b1
|
|

b1
×
b2
= |
^
i
^
j
^
k
121
761
|

=
^
i
(2+6)
-
^
j
(17)
+
^
k
(6+14)

= 4
^
i
+6
^
j
+8
^
k

|
b1
×
b2
|
= 42+62+82 = 116
a2
a1
=
^
i
^
j
^
k
- 3
^
i
+5
^
j
+7
^
k

= 4
^
i
6
^
j
8
^
k

∴ d =
|
4
^
i
+6
^
j
+8
^
k
.
4
^
i
6
^
j
8
^
k
116
|
= |
163664
116
|
= |
116
116
|
= 116
OR
Let
x+2
3
=
y+1
2
=
z3
2
= λ
x = 2 + 3 λ ,y = - 1 + 2 λ ,z = 3 + 2 λ
Therefore, a point on this line is: {(-2+3λ), (-1 + 2λ), (3 + 2λ)}
The distance of the point{(-2+3λ), (-1 + 2λ), (3 + 2λ)} from point (1, 2, 3) = 32
2+3λ12+(1)+2λ22+3+2λ32
= 32
⇒ - 3 + 3λ2 + (-3) + 2λ+2λ2 = 18
⇒ 9 + 9λ2 - 18λ + 9 + 4λ2 - 12λ + 4λ2 = 18
17λ2 - 30λ = 0
λ = 0 , λ =
30
17

When λ =
30
17

x = - 2 + 3λ = - 2 + 3 (
30
17
)
= - 2 +
90
17
=
56
17

y = - 1 + 2λ = - 1 + 2 (
30
17
)
= - 1 +
60
17
=
43
17

z = 3 + 2λ = 3 + 2 (
30
17
)
=
51+60
17
=
111
17

Thus, when λ =
30
17
, the point is (
56
17
,
43
17
,
111
17
)
and when λ = 0 , the point is (- 2 , - 1 , 3)
© examsnet.com
Go to Question: