© examsnet.com
Question : 20
Total: 29
If
=
+
+
and
=
−
, find a vector
such that
×
=
and
.
= 3
OR
If
+
+
= 0 and |
| = 3 , |
| = 5 and |
| = 7, show that the angle between
and
is 60°
OR
If
Solution:
Let
= x
+ y
+ z
=
+
+
∴
×
= |
|
×
=
( z − y ) −
( z − x ) +
( y − x ) ... (1)
Now,
×
=
=
−
... (2)
Comparing (1) and (2), we get :
z – y = 0 ⇒ z = y ...(3)
z – x = -1 ...(4)
y – x = -1 ...(5)
Also, given that
.
= 3
∴
+
+
. x
+ y
+ z
= 3
x + y + z = 3
Using (3), we get, x + 2y = 3 ...(6)
Adding (5) and (6), we get
3y = 2 ⇒ y =
∴ z =
Since z = y
From (6), we have,x = 3 - 2y
⇒ x = 3 -
⇒ x =
⇒ x =
∴
=
+
+
Thus, the required vector
is
+
+
OR
+
+
= 0 ⇒
+
= −
+
.
+
= −
. −
.
+ 2
.
+
.
=
.
|
| 2 + 2 |
| |
| cos θ + |
| 2 = |
| 2
3 2 + ( 2 ) ( 3 ) ( 5 ) c o s θ + 5 2 = 7 2
9 + 30cos θ + 25 = 49
30 cos θ = 15 ⇒ cos θ =
cos θ = cos 60° ⇒ θ = 60°
Hence proved.
∴
Now,
Comparing (1) and (2), we get :
z – y = 0 ⇒ z = y ...(3)
z – x = -1 ...(4)
y – x = -1 ...(5)
Also, given that
∴
x + y + z = 3
Using (3), we get, x + 2y = 3 ...(6)
Adding (5) and (6), we get
3y = 2 ⇒ y =
∴ z =
From (6), we have,x = 3 - 2y
⇒ x = 3 -
⇒ x =
⇒ x =
∴
Thus, the required vector
OR
9 + 30cos θ + 25 = 49
30 cos θ = 15 ⇒ cos θ =
cos θ = cos 60° ⇒ θ = 60°
Hence proved.
© examsnet.com
Go to Question: