CBSE Class 12 Math 2008 Solved Paper

© examsnet.com
Question : 21
Total: 29
Find the shortest distance between the following lines:
x−3
1
=
y−5
−2
=
z−7
1
and
x+1
7
=
y+1
−6
=
z+1
1

OR
Find the point on the line
x+2
3
=
y+1
2
=
z−3
2
at a distance 3√2 from the point (1 , 2 , 3)
Solution:  
x−3
1
=
y−5
−2
=
z−7
1

The vector form of this equation is:
→
r
= 3
^
i
+5
^
j
+7
^
k
+ λ (
^
i
−2
^
j
+
^
k
)

→
r
=
→
a
1
+λ
→
b1
... (1)
x+1
7
=
y+1
−6
=
z+1
1

The vector form of this equation is:
→
r
= -
^
i
−
^
j
−
^
k
+ λ (7
^
i
−6
^
j
+
^
k
)

→
r
=
→
a2
+λ
→
b2

Therefore,
→
a1
= 3
^
i
+5
^
j
+7
^
k
,
→
b1
=
^
i
−2
^
j
+
^
k
,
→
a2
= -
^
i
−
^
j
−
^
k
and
→
b2
= 7
^
i
−6
^
j
+
^
k

Now, the shortest distance between these two lines is given by:
d = |
→
b1
×
→
b2
.
→
a2
−
→
a1
|
→
b1
×
→
b1
|
|

→
b1
×
→
b2
= |
^
i
^
j
^
k
1−21
7−61
|

=
^
i
(2+6)
-
^
j
(1−7)
+
^
k
(−6+14)

= 4
^
i
+6
^
j
+8
^
k

|
→
b1
×
→
b2
|
= √42+62+82 = √116
→
a2
−
→
a1
= −
^
i
−
^
j
−
^
k
- 3
^
i
+5
^
j
+7
^
k

= −4
^
i
−6
^
j
−8
^
k

∴ d =
|
4
^
i
+6
^
j
+8
^
k
.
−4
^
i
−6
^
j
−8
^
k
√116
|
= |
−16−36−64
√116
|
= |
−116
√116
|
= √116
OR
Let
x+2
3
=
y+1
2
=
z−3
2
= λ
x = 2 + 3 λ ,y = - 1 + 2 λ ,z = 3 + 2 λ
Therefore, a point on this line is: {(-2+3λ), (-1 + 2λ), (3 + 2λ)}
The distance of the point{(-2+3λ), (-1 + 2λ), (3 + 2λ)} from point (1, 2, 3) = 3√2
∴
√−2+3λ−12+(−1)+2λ−22+3+2λ−32
= 3√2
⇒ - 3 + 3λ2 + (-3) + 2λ+2λ2 = 18
⇒ 9 + 9λ2 - 18λ + 9 + 4λ2 - 12λ + 4λ2 = 18
17λ2 - 30λ = 0
λ = 0 , λ =
30
17

When λ =
30
17

x = - 2 + 3λ = - 2 + 3 (
30
17
)
= - 2 +
90
17
=
56
17

y = - 1 + 2λ = - 1 + 2 (
30
17
)
= - 1 +
60
17
=
43
17

z = 3 + 2λ = 3 + 2 (
30
17
)
=
51+60
17
=
111
17

Thus, when λ =
30
17
, the point is (
56
17
,
43
17
,
111
17
)
and when λ = 0 , the point is (- 2 , - 1 , 3)
© examsnet.com
Go to Question: