CBSE Class 12 Math 2008 Solved Paper

© examsnet.com
Question : 20
Total: 29
If
→
a
=
^
i
+
^
j
+
^
k
and
→
b
=
^
j
−
^
k
, find a vector
→
c
such that
→
a
×
→
c
=
→
b
and
→
a
.
→
c
= 3
OR
If
→
a
+
→
b
+
→
c
= 0 and |
→
a
|
= 3 , |
→
b
|
= 5 and |
→
c
|
= 7, show that the angle between
→
a
and
→
b
is 60°
Solution:  
Let
→
c
= x
^
i
+y
^
j
+z
^
k

→
a
=
^
i
+
^
j
+
^
k

∴
→
a
×
→
c
= |
^
i
^
j
^
k
111
xyz
|

→
a
×
→
c
=
^
i
(z−y)
−
^
j
(z−x)
+
^
k
(y−x)
... (1)
Now,
→
a
×
→
c
=
→
b

→
b
=
^
j
−
^
k
... (2)
Comparing (1) and (2), we get :
z – y = 0 ⇒ z = y ...(3)
z – x = -1 ...(4)
y – x = -1 ...(5)
Also, given that
→
a
.
→
c
= 3
∴
^
i
+
^
j
+
^
k
. x
^
i
+y
^
j
+z
^
k
= 3
x + y + z = 3
Using (3), we get, x + 2y = 3 ...(6)
Adding (5) and (6), we get
3y = 2 ⇒ y =
2
3

∴ z =
2
3
Since z = y
From (6), we have,x = 3 - 2y
⇒ x = 3 -
2×2
3

⇒ x =
9−4
3

⇒ x =
5
3

∴
→
c
=
5
3
^
i
+
2
3
^
j
+
2
3
^
k

Thus, the required vector
→
c
is
5
3
^
i
+
2
3
^
j
+
2
3
^
k

OR
→
a
+
→
b
+
→
c
= 0 ⇒
→
a
+
→
b
= −
→
c

→
a
+
→
b
.
→
a
+
→
b
= −
→
c
.
−
→
c

→
a
.
→
a
+ 2
→
a
.
→
b
+
→
b
.
→
b
=
→
c
.
→
c

|
→
a
|
2
+2
|
→
a
|
|
→
b
|
cos θ + |
→
b
|
2
= |
→
c
|
2

32+(2)(3)(5)cosθ+52 = 72
9 + 30cos θ + 25 = 49
30 cos θ = 15 ⇒ cos θ =
1
2

cos θ = cos 60° ⇒ θ = 60°
Hence proved.
© examsnet.com
Go to Question: