Gravitation

© examsnet.com
Question : 25
Total: 25
A rocket is fired ‘vertically’ from the surface of Mars with a speed of 2 km s 1 . If 20% of its initial energy is lost due to Martian atmospheric resistance, how far will the rocket go from the surface of mars before returning to it? Mass of mars =6.4×1023 kg; radius of Mars =3395 km; G=6.67×1011 N m2 kg2.
Solution:  
Let m = mass of the rocket, M = mass of the Mars and R = radius of Mars. Let v be the initial velocity of rocket.
Initial K.E.=
1
2
m
v2
;
Initial P.E. =
GMm
R

Total initial energy =
1
2
m
v2
GMm
R

Since 20% of K.E. is lost, only 80% is left behind to reach the height.
Therefore,
Total initial energy available
=
80
100
×
1
2
m
v2
GMm
R
=0.4mv2
GMm
R
If the rocket reaches the highest point which is at a height h from the surface of Mars, its K.E. is zero and P.E. =
GMm
(R+h)

Using principle of conservation of energy, we have
0.4mv2
GMm
R
=
GMm
(R+h)

or
GM
R+h
=
GM
R
0.4v2
=
1
R
[GM0.4Rv2]

or
R+h
R
=
GM
GM0.4Rv2

or
h
R
=
GM
GM0.4Rv2
1
=
0.4Rv2
GM0.4Rv2
or h=
0.4×(2×103)2×(3.395×106)2
[(6.67×1011)×(6.4×1023)0.4×(3.395×106)×(2×103)2]
m
495km.
© examsnet.com
Go to Question: