NCERT Class XI Mathematics - Trigonometric Functions - Solutions

© examsnet.com
Question : 61
Total: 61
sin x =
1
4
, x in quadrant II
Solution:  
sin x =
1
4
, x in quadrant II
⇒
Ï€
2
< x < π ⇒
Ï€
4
<
x
2
<
Ï€
2
⇒
x
2
lies in first quadrant
⇒ sin
x
2
> 0 , cos
x
2
> 0 , tan
x
2
> 0
Also , cos2 x = 1 - sin2x ⇒ cos2x = 1 - (
1
4
)
2
= 1 -
1
16
=
15
16

⇒ cos x = ±
√15
4
⇒ cos x = -
√15
4

(Since x lies in II quadrant)
cos
x
2
= ± √
1+cosx
2
= ± √
1−
√15
4
2
= ± √
4−√15
8

= ±
√8−2√15
4
=
√8−2√15
4

sin
x
2
= ± √
1−cosx
2
= ± √
1+
√15
4
2
= ± √
4+√15
8
=
√8+2√15
4

tan
x
2
=
√8+2√15
√8−2√15
=
√4+√15
√4−√15
×
√4−√15
√4−√15
=
√16−15
4−√15
=
1
4−√15
×
√4+√15
√4+√15

=
√4+√15
1
= 4 + √15
Hence , sin
x
2
=
√8+2√15
4
, cos
x
2
=
√8−2√15
4
, tan
x
2
= 4 + √15
© examsnet.com
Go to Question: