NCERT Class XI Mathematics - Limits and Derivatives - Solutions

© examsnet.com
Question : 61
Total: 72
secx−1
secx+1
Solution:  
Let f (x) =
secx−1
secx+1

⇒ f (x) =
1
cosx
−1
1
cosx
+1

⇒ f (x) =
1−cosx
1+cosx
... (i)
Differentiating (i) with respect to x, we get
d
dx
(f (x)) =
(1+cosx)(1−cosx)′−(1−cosx)(1+cosx)′
(1+cosx)2

=
(1+cosx)(sinx)−(1−cosx)(−sinx)
(1+cosx)2

=
sinx+sinx.cosx+sinx−sinx.cosx
(1+cosx)2

=
2sinx
(1+cosx)2

=
2
1
cosecx
(1+
1
secx
)
2

=
2
cosecx
(secx+1)2
sec2x

=
2
cosecx
.
sec2x
(sec+1)2

=
2sinx.
1
cosx
.secx
(secx+1)2

=
2tanx.secx
(secx+1)2

© examsnet.com
Go to Question: