NCERT Class XI Mathematics - Complex Numbers and Quadratic Equations - Solutions

© examsnet.com
Question : 37
Total: 52
Convert the following in the polar form:
(i)
1+7i
(2−i)2

(ii)
1+3i
1−2i
Solution:  
(i) We have,
1+7i
(2−i)2
=
1+7i
4−1−4i
=
1+7i
3−4i
×
34+i
3+4i

=
3+4i+21i−28
9+16
=
−25+25i
25
= - 1 + i
∴ cos θ = - 1 …(i) and r sinθ = 1 …(ii)
Squaring and adding (i) and (ii), we get
r2 = 2 ⇒ r = √2
Substituting the value of r in (i) and (ii), we get √2 cos θ = - 1 , √2 sin θ = 1
⇒ cos θ = −
1
√2
, sin θ =
1
√2
⇒ cos θ = - cos (
Ï€
4
)
, sin θ = sin (
Ï€
4
)

Here, cosθ < 0 and sinθ > 0.
∴ θ lies in second quadrant.
∴ θ = π -
Ï€
4
=
3Ï€
4

∴ The required polar form is z = √2[cos
3Ï€
4
+isin
3Ï€
4
]

(ii)
1+3i
1−2i
=
1+3i
1−2i
×
1+2i
1+2i
=
1+2i+3i−6
1+4
=
−5+5i
5
= - 1 + i
∴ Required polar form is √2[cos
3Ï€
4
+isin
3Ï€
4
]
[By using part (i)]
© examsnet.com
Go to Question: