CBSE Class 12 Math 2022 Term I Solved Paper

© examsnet.com
Question : 4
Total: 50
If sin‌y=x‌cos(a+y), then ‌
dx
dy
is
Explanation: Given, sin‌y=x‌cos(a+y)
⇒‌‌x=‌
sin‌y
cos(a+y)

Differentiating with respect to y, we get
‌
dx
dy
‌
=‌
cos(a+y)‌
d
dy
(sin‌y)
−sin‌y
d
dy
{cos(a+y)}
cos2(a+y)

⇒‌
dx
dy
‌
=‌
cos(a+y)‌cos‌y−sin‌y[−sin‌(a+y)]
cos2(a+y)

⇒‌
dx
dy
‌
=‌
cos(a+y)‌cos‌y+sin‌ysin‌(a+y)
cos2(a+y)

⇒‌
dx
dy
‌
=‌
cos[(a+y)−y]
cos2(a+y)

⇒‌
dx
dy
‌
=‌
cos2a
cos2(a+y)
© examsnet.com
Go to Question: