CBSE Class 12 Math 2022 Term I Solved Paper

© examsnet.com
Question : 35
Total: 50
The maximum value of (‌
1
x
)
x
is
Explanation: Let ‌‌y=(‌
1
x
)
x

Then, ‌‌log‌y=x‌log(‌
1
x
)
=−x‌log‌x

Differentiating both sides w.r.t. x
∴‌‌‌
1
y
‌
dy
dx
‌
=−[x⋅‌
1
x
+log‌x
]

‌=−(1+log‌x)‌‌‌⋅⋅⋅⋅⋅⋅⋅(i)
On differentiating again eq. (ii), we get
‌
1
y
‌
d2y
dx2
−‌
1
y2
(‌
dy
dx
)
2
=‌
−1
x
‌
‌
‌
â‹…
â‹…
â‹…
â‹…
â‹…
â‹…
â‹…(ii)

From eq. (ii), we get
‌
dy
dx
‌
=−y(1+log‌x)‌‌‌⋅⋅⋅⋅⋅⋅⋅(iii)

‌=−(‌
1
x
)
x
(1+log‌x)

For maximum or minimum values of y, put ‌
dy
dx
=0

Therefore, (‌
1
x
)
x
(1+log‌x)
=0

However, (‌
1
x
)
x
≠0
for any value of x. Therefore
1+log‌x‌=0
⇒‌‌log‌x‌=−1⇒x=e−1⇒x=‌
1
e

When x=‌
1
e
, from eq. (iii)
‌
1
y
‌
d2y
dx2
−0‌
=−e

⇒‌‌‌
d2y
dx2
‌
=−e(e)1∕e
<0

Hence, y is maximum when x=‌
1
e
and maximum value of y=e1∕e
© examsnet.com
Go to Question: