CBSE Class 12 Math 2020 Outside Delhi Set 1 Solved Paper

Show Para  Hide Para 
Section - D

Q. Nos. 33 to 36 carry 6 marks each.
© examsnet.com
Question : 33
Total: 36
Using properties of determinates prove that:
|
a−bb+ca
b−cc+ab
c−aa+bc
|
=a3+b3+c3−3abc

OR
If A=[
132
20−1
123
]
, then show that A3−4A2−3A+11I=O. Hence find A−1
|
a−bb+ca
b−cc+ab
c−aa+bc
|

=|
−bb+c+aa
−cc+a+bb
−aa+b+cc
|
[‌ Applying ‌C1→C1−C3‌ and ‌C2→C2+C3]

=(−1)(a+b+c)|
b1a
c1b
a1c
|

[Taking (−1) common from C1 and (a+b+c) common from C2 ]
=(−1)(a+b+c)|
b1a
c−b0b−a
a−b0c−a
|
[‌ Applying ‌R2→R2−R1‌ and ‌R3→R3−R1]

=(−1)(a+b+c)[−(c−b)(c−a)+(b−a)(a−b)]
=(−1)(a+b+c)[−c2+ac+bc−ab+ba−b2−a2+ab]
=(−1)(a+b+c)(−a2−b2−c2+ab+bc+ac)
=(a+b+c)(a2+b2+c2−ab−bc−ac)
=a3+ab2+ac2−a2b−abc−a2c+ba2+b3+bc2−ab2−b2c−abc+ca2+c
b2+c3−acb−bc2−ac2
=a3+b3+c3−3abc
© examsnet.com
Go to Question: