CBSE Class 12 Math 2020 Outside Delhi Set 1 Solved Paper

© examsnet.com
Question : 28
Total: 36
If y=sin‌−1(‌
√1+x+√1−x
2
)
, then show that ‌
dy
dx
=‌
−1
2√1−x2

OR
Verify the Rolle's Theorem for the function f(x)=ex‌cos‌x in [−‌
Ï€
2
,‌
Ï€
2
]
Put x=cos‌2‌θ
⇒y=sin‌−1
(‌
√1+cos‌2‌θ
2
+‌
√1−cos‌2‌θ
2
)

⇒y=sin‌−1
(‌
√2cos22θ
2
+‌
√2⋅sin‌2θ
2
)

⇒y=sin‌−1(‌
cos‌2‌θ
√2
+‌
sin‌2θ
√2
)

⇒y=sin‌−1(sin‌(‌
Ï€
4
+2θ
)
.

⇒y=‌
Ï€
4
+2θ‌. ‌

⇒‌
dy
dθ
=2

‌ Put ‌θ=‌
cos−1x
2

⇒‌
dθ
dx
=‌
−1
4√1−x2

∴‌
dy
dx
=‌
−1
2√1−x2


OR

As we know that exponential and cosine functions are continuous and differentiable on R .
Let us find the values of the function at an extreme
⇒f(−‌
Ï€
2
)
=e−‌
Ï€
2
‌cos
(−‌
Ï€
2
)

⇒f(−‌
Ï€
2
)
=e−‌
Ï€
2
×0

⇒f(−‌
Ï€
2
)
=0

⇒f(‌
Ï€
2
)
=e‌
Ï€
2
‌cos
(‌
Ï€
2
)

⇒f(π)=e‌
Ï€
2
×0

⇒f(π)=0
Here, f′(−π∕2)=f(π∕2) , therefore there exist a c∈(−π∕2,π∕2) such that f′(c)=0 .
Let us find the derivative of f(x)
⇒f′(x)=‌
d(ex‌cos‌x)
dx

⇒f′(x)=cos‌x‌
d(ex)
dx
+ex‌
d(cos‌x)
dx

⇒f′(x)=ex(−sin‌x+cos‌x)
‌ Here, ‌f′(c)=0
⇒ec(−sin‌c+cos‌c)=0
⇒−sin‌c+cos‌c=0
⇒‌
−1
√2
s
i
n
‌c
+‌
1
√2
‌cos
‌c
=0

⇒−sin‌(‌
Ï€
4
)
sinc
+cos(‌
Ï€
4
)
‌cos
‌c
=0

⇒cos(c+‌
Ï€
4
)
=0

⇒c+‌
Ï€
4
=‌
Ï€
2

⇒c=‌
Ï€
4
E
(−‌
Ï€
2
,‌
Ï€
2
)

Thus, Rolle's theorem is verified.
© examsnet.com
Go to Question: