CBSE Class 12 Math 2020 Delhi Set 2 Solved Paper

© examsnet.com
Question : 9
Total: 11
Prove that tan[2tan−1‌
1
2
−cot−13
]
=‌
9
13
Solution:  
Let m=tan−1‌
1
2
.
⇒‌‌tan‌m=‌
1
2
‌
‌
‌
â‹…
â‹…
â‹…
â‹…
â‹…
â‹…
â‹…(i)

and n=cot−13
⇒‌‌cot‌n=3.
⇒‌‌tan‌n=‌
1
3
‌
‌
‌
â‹…
â‹…
â‹…
â‹…
â‹…
â‹…
â‹…(ii)

∴tan[2tan−1‌
1
2
−cot−13
]
=tan(2m−n)


=‌
tan‌2‌m−tan‌n
1+tan‌2‌m‌tan‌n.
[
∵tan(a−b)
=‌
tan‌a−tan‌b
1+tan‌a‌tan‌b
]

=‌
‌
2‌tan‌m
1−tan2m
−tan‌n
1+‌
2‌tan‌m
1−tan2m
‌tan
‌n

 
=‌
‌
2×
1
2
1−(
1
2
)
2
−
1
3
1+‌
2×
1
2
1−(‌
1
2
)
2
×
‌
1
3

=‌
1
1−‌
1
4
−‌
1
3
‌
=‌
‌
4
3
−
1
3
1+‌
1
1−‌
1
4
×
‌
1
3
×
‌
1
3

‌=‌
1
1+‌
4
9

‌=‌
9
9+4

‌=‌
9
13
.
© examsnet.com
Go to Question: