CBSE Class 12 Math 2020 Delhi Set 1 Solved Paper

© examsnet.com
Question : 34
Total: 36
Using integration find the area of the region bounded between the two circles x2+y2=9 and (x−3)2+y2=9.
OR
Evaluate the following integral as the limit of sums
4
∫
1
(x2−x)dx
.

OR

Let I=
4
∫
1
(x2−x)‌dx

We know
b
∫
a
f(x)‌dx
=
lim
n→∞
h
[f(a)+f(a+h)+f(a+2h)+...+f(a+(n−1)h)]
,
As n→∞,h→0⇒nh=b−a=4−1=3
∴
b
∫
a
f(x)‌dx
=
lim
n→∞
h
‌
n−1
∑
r=0
f(a+rh)‌‌‌⋅⋅⋅⋅⋅⋅⋅(i)

Here f(x)=x2−x,a=1,b=4 .
∴f(a+rh)=(a+rh)2−(a+rh)
⇒f(1+rh)=(1+rh)2−(1+rh)

By using (i),
4
∫
1
(x2−x)‌dx
=
lim
n→∞
h
‌
n−1
∑
r=0
[r2h2+rh]

⇒I=
lim
n→∞
h
{h2‌
n−1
∑
r=0
r2
+h‌
n−1
∑
r=0
r
}

⇒I=
lim
n→∞
h
{h2×‌
n(n−1)(2n−1)
6
+h‌
n(n−1)
2
}

⇒I=
lim
n→∞
{‌
nh(nh−h)(2nh−h)
6
+‌
nh(nh−h)
2
}

⇒I=‌
3(3−0)(6−0)
6
+‌
3(3−0)
2

⇒I=9+‌
9
2
=‌
27
2
.
© examsnet.com
Go to Question: