CBSE Class 12 Math 2011 Solved Paper

© examsnet.com
Question : 26
Total: 29
Evaluate:
Ï€
2
∫
0
2 sin x cos x tan−1 (sin x) dx
OR
Evaluate:
Ï€
2
∫
0
xsinxcosx
sin4x+cos4x
dx
Solution:  
Consider the given integral
I =
Ï€
2
∫
0
2 sin x cos x tan−1 (sin x) dx
Let t = sinx
⇒ dt = cos x dx
When x =
Ï€
2
, t = 1
When x = 0 , t = 0
Now, ∫ 2 sin x cos x tan−1 (sin x) dx
= ∫ 2t tan−1 t dt
= [tan−1t] ∫ 2t dt - ∫ [
d
dt
(tan−1t)
‌∫2tdt
]
dt
[tan−1t] [2.
t4
2
]
- ∫ (
1
1+t2
×2
.
t2
2
)
dt
= t2tan−1 t - ∫
t2
1+t2
dt
= t2tan−1 t - ∫ [1−
1
1+t2
]
dt
= t2tan−1 t - t + $$tan^{-1} t
∴ I =
Ï€
2
∫
0
2 sin x cos x tan−1 (sin x) dx
= [t2tan−1t−t+tan−1t]01
= [12tan−11−1+tan−11] - [02tan−10−0+tan−10]
= [1×
Ï€
4
−1
+
Ï€
4
]
- 0
=
Ï€
4
−1
+
Ï€
4

=
Ï€
2
- 1
OR
I =
Ï€
2
∫
0
xsinxcosx
sin4x+cos4x
dx ... (1)
Using the property
a
∫
0
f (x) dx =
a
∫
0
f (a - x) dx
I =
Ï€
2
∫
0
(
Ï€
2
−x
)
s
i
n
(
Ï€
2
−x
)
c
o
s
(
Ï€
2
−x
)
sin4(
Ï€
2
−x
)
+cos4(
Ï€
2
−x
)
dx
⇒ I =
Ï€
2
∫
0
(
Ï€
2
−x
)
c
o
s
x
s
i
n
x
cos4x+sin4x
dx ... (2)
Adding (1) and (2)
2I =
Ï€
2
∫
0
(
Ï€
2
.sinxcosx
)
sin4x+cos4x
dx
⇒ I =
Ï€
4
Ï€
2
∫
0
|
sinxcosx
sin4x+cos4x
|
dx
=
Ï€
4
Ï€
2
∫
0
|
sinxcosx
cos4x
sin4x
cos4x
+1
|
dx
Ï€
4
‌
Ï€
2
∫
0
tanxsec2x
tan4x+1
dx
Put tan2 x = z
∴ 2 tan x sec2 x dx = dz
⇒ tan x sec2 x dx =
dz
2

When x = 0 , z = 0 and when x =
Ï€
2
, z = ∞
∴ I =
Ï€
4
‌
∞
∫
0
dz
2
z2+1

⇒ I =
Ï€
8
‌
∞
∫
0
dz
1+z2

=
Ï€
8
|tan−1(z)
|0∞

=
Ï€
8
t
a
n−1
∞
−tan−10

=
Ï€
8
(
Ï€
2
−0
)

=
Ï€2
16

© examsnet.com
Go to Question: