CBSE Class 12 Math 2009 Solved Paper

© examsnet.com
Question : 14
Total: 29
Find
dy
dx
if (x2+y2)2 = xy.
OR
If y =3cos(log x) + 4sin(log x), then show that x2
d2y
dx2
+x
dy
dx
+ y = 0
Solution:  
(x2+y2)2 = xy ... (i)
Differentiating with respect to x, we have,
2 (x2+y2)(2x+2y.
dy
dx
)
= y +
xdy
dx

⇒ 4x (x2+y2) + 4y (x2+y2).
dy
dx
= y +
xdy
dx

⇒
dy
dx
(4x2y+4y3−x)
= y - 4x3−4xy2
⇒
dy
dx
=
y−4x3−4xy2
4x2y+4y3−x

y 3cos(logx) 4sin(logx)
Differentiating the above function with respect to x, we have,
dy
dx
=
−3sin(logx)
x
+
4cos(logx)
x

x
dy
dx
= - 3 sin (logx) + 4 cos (log x)
Again differentiating with respect to x, we have,
x
d2y
dx2
+
dy
dx
=
−3cos(logx)
x
-
4sin(logx)
x

⇒ x2
d2y
dx2
+
dy
dx
+ x
dy
dx
= - (3 cos (log x) + 4 sin (log x))
⇒ x2
d2y
dx2
+
dy
dx
+ x
dy
dx
= - y
⇒ x2
d2y
dx2
+
dy
dx
+ x
dy
dx
+ y = 0
© examsnet.com
Go to Question: