CBSE Class 12 Math 2009 Solved Paper

© examsnet.com
Question : 25
Total: 29
Evaluate:
Ï€
∫
0
ecosx
ecosx+e−cosx
dx
OR
Evaluate:
Ï€
2
∫
0
(2 log sin x - log sin 2x) dx
Solution:  
Let I =
Ï€
∫
0
ecosx
ecosx+e−cosx
dx
Using
a
∫
0
f (x) =
a
∫
0
f (a - x) dx
I =
Ï€
∫
0
ecos(π−x)
ecos(π−x)+e−cos(π−x)
dx
2I =
Ï€
∫
0
e−cosx+ecosx
ecosx+e−cosx
dx
I =
1
2
Ï€
∫
0
dx =
1
2
[Ï€ - 0] =
Ï€
2

OR
I =
Ï€
2
∫
0
(2 log sin x - log sin 2x) dx
I =
Ï€
2
∫
0
(log‌
sin2x
2sinx.cosx
.dx
)

I =
Ï€
2
∫
0
log (
tanx
2
)
. dx ... (i)
Using property
a
∫
0
f (x) dx =
a
∫
0
f (a - x) dx
We get,
I =
Ï€
2
∫
0
log (
tan(
Ï€
2
−x
)
2
)
dx
⇒ I =
Ï€
2
∫
0
log (
cotx
2
)
dx ... (ii)
Additing (i)&(ii)
2I =
Ï€
2
∫
0
[log(
tanx
2
)
+log(
cotx
2
)
]
dx
⇒ 2I =
Ï€
2
∫
0
log [(
tanx
2
)
(
cotx
2
)
]
dx
⇒ I =
1
2
Ï€
2
∫
0
log (
1
4
)
dx
⇒ I =
1
2
log (
1
4
)
×(
Ï€
2
)

⇒ I =
1
2
log (
1
4
)
1
2
× (
Ï€
2
)

⇒ I = log (
1
2
)
×(
Ï€
2
)

⇒ I =
Ï€
2
‌log
‌
1
2
© examsnet.com
Go to Question: