CBSE Class 12 Math 2008 Solved Paper

© examsnet.com
Question : 17
Total: 29
Evaluate:
π
0
xsinx
1+cos2x
dx
Solution:  
I =
π
0
xisnx
1+cos2x
dx ... (i)
I =
π
0
πxsinπx
1+cos2xπx
dx
I =
π
0
πxsinx
1+cos2x
dx
I =
π
0
πsinx
1+cos2x
dx -
π
0
xsinx
1+cos2x
dx ... (2)
Adding (1) and (2), we get:
2I =
1
1
πdt
1+t2

2I = - π
1
1
(
1
1+t2
)
dt
2I = - π |tan1t|11
2I = π [tan11tan11 - 1]
2I = π (
π
4
(
π
4
)
)

2I =
π2
2

∴ I =
π2
4
© examsnet.com
Go to Question: